Toward Short-Range Ensemble Prediction of Mesoscale Forecast Error

Eric P. Grimit and Clifford F. Mass

Supported by:

ONR Multi-Disciplinary University Research Initiative (MURI) and A Consortium of Federal and Local Agencies

<u>Traditional Approach – Spread-Error Correlation</u>

Ensemble spread should provide an approximation to the true forecast uncertainty

agreement

better forecast reliability

disagreement

- To quantify this "spread-skill relationship":
 - Find the linear correlation between ensemble spread (σ) and the ensemble mean forecast error (|e_{EM}|) over a large sample
 - Strength of the correlation is limited by the case-to-case spread variability (β) (Houtekamer, 1993; Whitaker and Loughe, 1998)

$$\rho^{2}(\sigma, |e_{EM}|) = \frac{2}{\pi} \frac{1 - \exp(-\beta^{2})}{1 - \frac{2}{\pi} \exp(-\beta^{2})}; \beta = \operatorname{std}(\ln \sigma)$$

Observed Forecast Error Predictability: A Disappointment

Tropical Cyclone Tracks

NCEP SREF Precipitation

SAMEX '98 SREFs

[c.f. Goerss 2000]

[c.f. Hamill and Colucci 1998]

[c.f. Hou et al. 2001]

- Highly scattered relationships, thus low correlations
- No indication of spread-error correlation potential
- No assessment of dependency on the metrics used

Observed Forecast Error Predictability: A Disappointment

Not all hope is lost...

UW MM5 SREF 10-m Wind Direction

[c.f. Grimit and Mass 2002]

- More recent studies show that domain-averaged spreaderror correlations can be as high as 0.6-0.7
 - (Grimit and Mass 2002, Stensrud and Yussouf 2003)
 - Potentially higher correlations can be achieved by considering only cases with extreme spread

A Simple Stochastic Model of Spread-Skill

PURPOSES:

- 1) To establish <u>practical</u> limits of forecast error predictability, that could be expected given perfect ensemble forecasts of finite size.
- 2) To address the user-dependent nature of forecast error estimation by employing a variety of predictors and error metrics.

A Simple Stochastic Model of Spread-Skill

1. Draw today's "forecast uncertainty" from a log-normal distribution (Houtekamer 1993 model).

In(
$$\sigma$$
) ~ N(In(σ_f), β^2)

2. Create synthetic ensemble forecasts by drawing M values from the "true" distribution.

$$F_i \sim N(Z, \sigma^2)$$
; $i = 1, 2, ..., M$

3. Draw the verifying observation from the same "true" distribution (statistical consistency).

$$V \sim N(Z, \sigma^2)$$

- Stochastically simulated ensemble forecasts at a single, arbitrary observing location or model-grid box with 50,000 realizations (cases)
- Assumed:
 - Gaussian statistics
 - statistically consistent (perfectly reliable) ensemble forecasts
- Varied:
 - temporal spread variability (β)
 - finite ensemble size (M)
 - spread and skill metrics (continuous and categorical)

Simple Model Spread-Error Correlations

Alternative Approaches

Given statistical consistency, ensemble variance should equal the EF mean forecast error variance.

Alternative Approaches

Resolved range of error variance (Wang and Bishop 2003)

- Choose N_{bin} equally populated bins of ensemble variance
- Find the mean ensemble variance and the error variance within each bin
- The range of resolved error variances indicates closeness to statistical consistency
- Could also be applied to other error metrics (e.g. AEM, RPS)

Alternative Approaches

- Probabilistic skill of forecast error predictions
 - Use errors conditioned by spread category as probabilistic predictions of forecast error.
 - Evaluate using CRPS and its associated skill score with a cross-validation procedure.
 - CRPSS measures the continuous forecast error predictability.
 - For categorical error forecasts, use BS or RPS and the associated skill score.
 - Tradeoff between bin widths and number of samples in each bin.

UW SREF System Summary

	Name	# of Members	EF Type	Initial Conditions	Forecast Model(s)	Forecast Cycle	Domain
Homegrown	ACME	17	SMMA	8 Ind. Analyses, 1 Centroid, 8 Mirrors	"Standard" MM5	00Z	36km, 12km
	ACMEcore	8	SMMA	Independent Analyses	"Standard" MM5	00Z	36km, 12km
	ACMEcore+	8	РММА	ee ee	8 MM5 variations	00Z	36km, 12km
ported	PME	8	МММА		8 "native" large-scale	00Z, 12Z	36km

ACME: Analysis-Centroid Mirroring Ensemble

PME: Poor-Man's Ensemble

SMMA: Single-Model Multi-AnalysisPMMA: Perturbed-Model Multi-Analysis

MMMA: Multi-model Multi-Analysis

Mesoscale SREF and Verification Data

Mesoscale SREF Data:

- Total of 129, 48-h forecasts (31 OCT 2002 28 MAR 2003) all initialized at 0000 UTC
- Missing forecast case days are shaded
- Parameters of Focus:
 - 12 km Domain: Wind @ 10m (WDIR₁₀, WSPD₁₀) Temperature at 2m (T₂)
- Short-term mean bias correction
 - Applied at every location and forecast lead time separately
 - Varied training window from 2-30 days

Verification Data:

12 km Domain:

RUC20 analysis

(NCEP 20 km mesoscale analysis)

observations

Domain-Averaged Spread-Error Correlation

(no bias correction)

ACMEcore

ACMEcore+

- The benefit of including model physics variability is apparent.
- Domain-averaging produces correlations much higher than expected. Correlations of averages are referred to as ecological correlations in statistics.

Domain-Averaged Spread-Error Correlation

(14-day bias correction)

*ACMEcore

*ACMEcore+

Bias correction reduces case-to-case spread variability, resulting in poorer spread-error correlations overall.

Spatial Distribution of Local Spread-Error Correlation

Maximum Local STD-AEM correlation ~ 0.54

Domain-Averaged

~ 0.62

Average Local Spread-Error Correlation

(no bias correction)

ACMEcore

ACMEcore+

- The average local spread-error correlations are small.
- Estimates from the simple stochastic model are more applicable here, giving an indication of the departure from local statistical consistency.

Preliminary Conclusions

- Accounting for model and surface boundary parameter uncertainty in a mesoscale SREF system is crucial.
 - ACME^{core+} forecasts possess valuable information about the flow-dependent mesoscale uncertainty that ACME^{core} forecasts do not.
- Eckel and Mass (2003) found that a simple bias correction improves ensemble forecast skill, but these results suggest that degradations are also possible.
 - Traditional spread-error correlations are reduced in many cases
 - A shorter range of error variances are resolved (F00-F15)
- Continuous (categorical) predictors of forecast error are most appropriate for end users with a continuous (categorical) utility function.

Outstanding Questions

- How can an ensemble-based prediction system for <u>local</u> forecast errors be developed?
 - Ecological (domain-averaged) spread-error correlations can be quite large, while local spread-error correlations are near zero.
 - Can we ever expect local statistical consistency?
- Will more sophisticated post-processing methods (e.g. ensemble MOS, best-member dressing, Bayesian model averaging) also degrade the forecast error predictability?
 - Or is the decrease in forecast error predictability in this study an aberration?
 - Maintaining case-to-case spread variability must be a constraint of paramount importance for ensemble post-processing methods.

FURTHER QUESTIONS???

EXTRA SLIDES

Continuous or Categorical Predictors?

Continuous (categorical) predictors of forecast error are most skillful for end users with a continuous (categorical) utility function.

Spatial Distribution of Resolved Range of ERV

Resolved Range of Local Error Variance

(Domain-averaged)

ACMEcore

ACMEcore+

Bias correction reduces the resolved range of local error variances during the first 15h. At longer lead times, no difference is apparent.

Spread-Error Correlations

(no bias correction)

ACMEcore

ACMEcore+

Forecast Error Prediction

Like any other scientific prediction or measurement, weather forecasts should be accompanied by error bounds, or a statement of uncertainty.

$$T_{2m} = 3 \, ^{\circ}C \,$$

- Forecast uncertainty changes spatially and temporally, and is dependent on:
 - Atmospheric predictability a function of the sensitivity of the flow to:
 - Magnitude/orientation of initial state errors
 - Numerical model errors / deficiencies
- Ensemble weather forecasts appear well-suited for quantifying fluctuations in atmospheric predictability

Value of Forecast Error Prediction

- Operational forecasters require explicit prediction of this flow-dependent forecast uncertainty
 - Helps to decide how much to trust model forecast guidance
 - Current uncertainty knowledge is partial, and largely subjective
- End users could greatly benefit from knowing the expected forecast error
 - Allows sophisticated users to make optimal decisions in the face of uncertainty (economic cost-loss or utility)

Take protective action if: $P(|E_{T_{2m}}| > 2 \text{ °C}) > \text{cost/loss}$

■ Common users of weather forecasts – confidence index

